Problem description: “Feature selection at training time”

Goal Fast classification (no waste of processing)

Complex classification: problem too hard to plan full automation

⇒ confidence estimation is needed (for rejection)

Several types of features are available,

from raw data to high-level features

Low-level features are much faster to be computed

Low-level features are sufficient to identify well some particular classes

Application Classification of scanned documents mainly for mailroom automation

Cost parameter c

A cascade decision tree algorithm

Inputs one test sample x

N “group-of-features extractors” f_i

ranked by increasing CPU needs

N confidence-rated classifiers C_i (*)

each trained on first features $\{f_k\}_{k=1..i}$

(*) assume that the more input features there are, the more accurate the classification is

Params

confidence thresholds $\{\tau_i\}_{i=1..N}$

confidence correction functions $\{\tau_i\}_{i=1..N}$

Outputs

predicted class \hat{c}

confidence $s(\hat{c}|x)$

for $i = 1$ to N do

Compute group of features $f_i(x)$

Compute outputs of classifier C_i on $\{f_k\}_{k=1..i}$

predicted class \hat{c}_i and confidence s_i

if $i = N$ or $s_i \geq \tau_i$ then

return $\hat{c} = \hat{c}_i$, $s(\hat{c}|x) = \tau_i(s_i)$

end if

end for

Costs and optimization

Confidence thresholds $\{\tau_i\}_{i=1..N-1}$

We define three types of additive costs:

$C_0 \geq 0$	TRUE	LESS features
$C^- > 0$	FALSE	LESS features
$C^+ = 1$	FALSE	MORE features

Loss function to minimize

Sum of these costs

Optimization method Grid search on (quantized) possible thresholds combinations

Confidence correction functions $\{\tau_i\}_{i=1..N}$

Non-parametric approach (may overfit?) vs. Parametric approach (how much engineered?)

Conclusions

* The proposed testing cascade strategy relies on some properties of the core classifier.

* Empirical results are mixed.

* What are the alternative algorithms to select features at test time?